Profesor: Pedro Loyola

CENTRO EDUCACIONAL DE ADULTOS ISABEL LA CATOLICA. PUENTE ALTO.

ASIGNATURA	Ciencias Naturales	NIVEL	1º N
UNIDAD	Movimiento	APRENDIZAJE ESPERADO	Miden y manejan con soltura magnitudes y unidades de uso común (la velocidad de un cuerpo, por ejemplo).
OBJETIVO De la Guia.		INDICADORES De Evaluacion.	Aplicar magnitudes y unidades de uso común (la velocidad de un cuerpo, por ejemplo).

	Lectura de la guía y ver los ejemplos propuestos.
INSTRUCCIONES PARA EL DESARROLLO DE LA GUIA.	

GUIA № FECHA: NOMBRE DE LA GUIA Movimiento Rectilíneo Uniforme (MRU)

GUÍA DE CIENCIAS NATURALES (FÍSICA) N°1.

NIVEL: 1 NM

SECTOR: CIENCIAS NATURALES (FÍSICA)

TEMA: MOVIMIENTO RECTILÍNEO UNIFORME.(M.R.U.)

Aprendizajes Esperados:

- 1.-Reconocen su capacidad para obtener resultados numéricos útiles mediante cálculos sencillos (leyes de la cinemática)
- 2.-Miden y manejan con soltura magnitudes y unidades de uso común (la velocidad de un cuerpo, por ejemplo).
- 3.-Comprenden que mientras algunas magnitudes físicas cambian y evolucionan con el transcurrir del tiempo (Como la velocidad), otras permanecen constantes.

INTRODUCCIÓN: como sabemos, la física es una ciencia muy extensa, y algunas de sus ramas o campos de estudio son la termodinámica, la acústica, la óptica, el electromagnetismo, la mecánica, etc. En esta unidad nos dedicaremos al estudio de la **mecánica**, es decir, parte de la física que estudia los fenómenos relacionados con el movimiento de los cuerpos, sus causas y el equilibrio.

La mecánica, para su estudio, se divide en tres partes:

- 1) Cinemática: estudia el movimiento de los cuerpos sin explicar el por qué de ellos, es decir, sólo en función del tiempo y el camino recorrido.
- 2) Dinámica: es estudio de las "fuerzas" como causa del movimiento de los cuerpos.
- 3) Estática: es el estudio de las fuerzas en equilibrio.

TRAYECTORIA Y DESPLAZAMIENTO

Trayectoria y desplazamiento son dos conceptos que en el lenguaje cotidiano los utilizamos como sinónimos sin tener ningún problema, sin embargo, en el lenguaje físico tienen significados diferentes. Veamos la diferencia:

ser una línea recta, curva o mixta. Si la trayectoria es recta , el movimiento es Rectilíneo. Ejemplo :		recorrida (d). Se puede llamar itinerario al conjunto de posiciones que adopta un emovimiento en diferentes instantes de tiempo. En general, la trayectoria de un cu ser una línea recta, curva o mixta. Si la trayectoria es recta , el movimiento es l Ejemplo:	erpo puede
---	--	---	------------

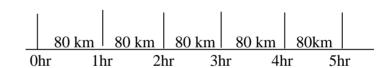
Profesor: Pedro Loyola

•	Si la trayectoria es una curva , el movimiento es Curvilíneo. Ejemplo :
•	Si la trayectoria es una elipse , el movimiento es elíptico .Ejemplo :
	Si la trayectoria es una circunferencia, el movimiento es circular. Ejemplo :
•••	TRAVECTORIA ES UNA MAGNITUD ESCALAR!

A) **Desplazamiento** (**D**): indica el cambio de posición de un cuerpo experimentado por él durante un intervalo de tiempo. Es una línea recta entre el punto de partida y el punto de llegada. Sí llega al punto de inicio no hay desplazamiento.

Gráficamente se representa con una flecha, llamada **VECTOR**, cuyo origen muestra la posición inicial del objeto y la punta indica su posición final. El desplazamiento solo depende entonces de los puntos entre los cuales se ha movido el cuerpo y es independiente del camino seguido por él.

¡El desplazamiento es una magnitud vectorial!


Tema: Movimiento uniforme rectilíneo (M.R.U.)

Movimiento uniforme:

Recordemos que un móvil tiene movimiento uniforme si su rapidez es constante. Esto significa que el móvil recorre distancias iguales en tiempos iguales. Por ejemplo:

- 1) Un hombre que camina dando un paso por cada segundo que transcurre.
- 2) Un móvil que recorre una misma distancia, por ejemplo 80 Km. Por cada hora transcurrida.

Rapidez y velocidad

a) **Rapidez:** es la distancia promedio (media) que recorre un móvil por cada unidad de tiempo. Es una magnitud escalar (posee solo módulo). Designado la rapidez media por Vm, la distancia por d y el tiempo t, tenemos la siguiente expresión :

Velocidad media	Distancia recorrida	tiempo
$V = \frac{d}{t}$	$d = V \cdot t$	$t = \frac{d}{v}$

- b) **Velocidad:** la velocidad media V_m se calcula como el cociente entre el desplazamiento y el tiempo empleado en dicho desplazamiento. Es una magnitud vectorial, es decir, posee módulo, dirección y sentido.
 - La dirección y el sentido de la velocidad corresponden a los del desplazamiento. Esto hace que "cualquier cambio en la dirección o el sentido del desplazamiento cambie la velocidad".
 - \bullet Del mismo modo que la rapidez, se define la velocidad instantánea, V_{inst} , de un cuerpo como el valor de su velocidad en cada instante de tiempo.

Diferencia entre rapidez y velocidad

Ejemplo:

* Decir que un móvil se mueve a 45 (Km/hr) nos estamos refiriendo a su rapidez, ya que estamos entregando sólo su módulo.

* En cambio, si decimos que el mismo móvil se mueve a 45 (km/h) por Avenida. Pajaritos hacia Alameda, se está entregando su módulo, dirección y sentido (elementos del vector velocidad).

Transformación de unidades:

$$\underline{1) \operatorname{De}(\frac{m}{S})}$$
 a $(\frac{\operatorname{K}m}{S})$:

Ejemplo: expresar 12 $(\frac{m}{s})$ en $(\frac{Km}{s})$.

$$12\left(\frac{m}{S}\right) = \frac{\frac{1}{1000}Km}{\frac{1}{3600}h} = 12 \cdot \frac{3600 \text{ Km}}{1000 \text{ h}}. = 12 \cdot 3,6 \left(\frac{Km}{h}\right). = 43.2 \left(\frac{Km}{h}\right).$$

Conclusión: Para expresar de $(\frac{m}{s})$ a $(\frac{Km}{h})$, se debe multiplicar por el factor......

2) De $(\frac{Km}{h})$ a $(\frac{m}{s})$: en general, se debe dividir por la constante......

ejemplo: expresar
$$30 \left(\frac{Km}{h} \right)$$
, en $\left(\frac{m}{S} \right)$

30:
$$3.6 = 8.4 \left(\frac{m}{s}\right)$$

Ejercicios: (Transformación de unidades)

- 1) Un móvil A se mueve con una rapidez de $60 \left(\frac{Km}{h}\right)$ y un móvil B va a $15 \left(\frac{m}{s}\right)$. ¿Cuál se mueve más rápido?
- 2) Expresar: a) $17 \left(\frac{m}{S} \right)$ a $\left(\frac{Km}{h} \right)$.
 - b) $9\left(\frac{m}{S}\right) a \left(\frac{km}{h}\right)$. c) $120\left(\frac{km}{h}\right) a \left(\frac{m}{S}\right)$

 - d) 90 ($\frac{Km}{h}$) a ($\frac{m}{s}$)

<u>Instrucciones:</u> resuelve los siguientes ejercicios aplicando la ecuación $V = \frac{d}{t}$

- 1.- Un atleta recorre los 100 (m) planos en 12 (s) ¿Cuál es su rapidez en $(\frac{m}{S})$ y en $(\frac{Km}{H})$?
- 2.- Un avión vuela con una rapidez constante de 450 ($\frac{Km}{H}$) ¿Qué distancia recorre en 3 (H)?
- 3.- La rapidez media de un tren es de 95 ($\frac{Km}{H}$) ¿Cuánto demorará en recorrer 800 (Km)?.
- 4.-Un móvil recorre 400(m) en 8 (s):
 - a) Calcular la rapidez del móvil.
 - b) Realizar la gráfica (t, d) del movimiento del móvil para los 8 (s).
 - c) Determinar la pendiente de la recta entre t=3(s) y t=7(S) ¿Concuerda con el valor de la rapidez obtenido en (a)?.
 - d) Realizar la gráfica (t, v) del movimiento.
 - e) Calcular la distancia recorrida por el móvil entre t=2(s) y t=8(S).
- 5.-Un avión recorre 2940 (Km) en 3 (H). Calcular su rapidez en $(\frac{Km}{H})$ y $(\frac{m}{S})$.
- 6.- Un automóvil corre a $80 \left(\frac{Km}{H}\right)$ durante 4 (H). Calcular la distancia recorrida por el móvil.
- 7.- Juan Pérez, campeón chileno de natación, recorre 100 (m) en 58 (s) ¿Cuál es su rapidez?.
- 8.- Un ciclista viaja a 45 ($\frac{Km}{H}$) durante 120 minutos ¿Qué distancia recorre el ciclista en este Tiempo ?.
- 9.- ¿Cuánto tardará un automóvil, con M.R.U., en recorrer una distancia de 3000 (m), si su rapidez es de $108 \left(\frac{Km}{H}\right)$?.
- 10.- Un móvil se mueve a una rapidez de 12 $(\frac{m}{s})$ ¿Qué distancia recorre en 5 (s)?.
- 11.- Un coche recorre 3 (km) en 150 (s). Calcular su rapidez en (m/s) y en (Km/Hr).
- 12.- Un tractor se mueve a una velocidad de 36 (Km/Hr) y tarda 170 (s) en atravesar un campo a lo largo. ¿Cuál es la longitud de ese campo?
- 13.- Un avión vuela en línea recta, a una velocidad constante de 50 (m/s) :
 - a) Construye una tabla que muestre la posición o el desplazamiento total al cabo de cada segundo, durante un período de 10 (s).
 - b) Utiliza los datos de la tabla para construir una gráfica de posición versus tiempo.
 - c) Demuestre que la pendiente de recta es igual a la velocidad del avión
 - d) Traza una gráfica de velocidad versus tiempo del movimiento del avión durante los primeros 10 (s).
 - e) Determina el desplazamiento del avión entre t = 5(s) y t = 8(s).