

III MEDIO 2020 NÚMEROS APOYO N°1

Guía para el aprendizaje

Nombre de alumno/a: _	Curso:	
-----------------------	--------	--

Asignatura: Matemáticas Nivel: III medio

Unidad: N° 1 Números Contenido: Números Imaginarios

Objetivo de aprendizaje: Resolver problemas de adición, sustracción, multiplicación y división de números complejos C, en forma pictórica, simbólica y con uso de herramientas tecnológicas.

Aún quedan números por conocer

Como ya sabemos existen distintos conjuntos numéricos.

Naturales	Son aquellos números que se utilizan al contar o al ordenar elementos de un conjuntos. $Simbolicamente \colon \mathbb{N} = \{1,2,3,\dots,n,n+1\}$
Z Enteros	Está formado por la unión de los números naturales, el cero y los opuestos de los naturales. $simbolicamente \colon \mathbb{Z} = \{, -3, -2, -1, 0, 1, 2, 3,\}$
Racionales	Está conformado por la unión de \mathbb{N} , \mathbb{Z} y se presentan como el cociente de dos enteros. $Simbolicamente: \mathbb{Q} = \left\{ \frac{a}{b} \ / \ a,b \in \mathbb{Z} \ \land b \neq 0 \right\}$
Irracionales	Un número irracional es un número que no se puede escribir en fracción, su forma decimal sigue para siempre sin repetirse. $Ejemplos: \sqrt{2}, \pi, \Theta, \sqrt{3}$
Reales	Está conformado por la unión de $\mathbb Q$ y los números irracionales.

Al resolver distintos tipos de ecuaciones han surgido distintos problemas matemáticos, que han obligado a extender el grupo de los números conocidos.

Observa los siguientes ejemplos

$$x^2 - 4 = 0$$
 $x^2 = 4$ $x = \pm \sqrt{4}$ $x_1 = 2$ $x_2 = -2$ $x = 2$ $x = 2$ NO EXISTE SOLUCIÓN EN LOS REALES

Ya que no existe solución en los números conocidos, se extiende y se presentan los <u>números imaginarios</u> para resolver este tipo de problemas algebraicos.

i

Son aquellos números cuya representación ya no es posible en los números reales

Importante: $\sqrt{-1} = i$

Imaginarios

Resolvamos entonces el problema anterior.

$$x^{2} + 4 = 0$$

$$x^{2} = -4$$

$$x = \pm \sqrt{-4}$$

$$x = \pm \sqrt{4 \cdot -1}$$

$$x = \pm \sqrt{4} \cdot \sqrt{-1}$$

$$x = \pm \sqrt{4} i$$

$$x_{1} = 2i \quad x_{2} = -2i$$

Resuelve los siguientes ejercicios:

1.	$\sqrt{-4}$	=
_ .	V 1	

2.
$$\sqrt{-16} =$$

3.
$$\sqrt{-25} =$$

4.
$$\sqrt{-9} =$$

5.
$$\sqrt{-64} =$$

6.
$$\sqrt{-36} =$$

7.
$$\sqrt{-144} =$$

8.
$$\sqrt{-121} =$$

9.
$$\sqrt{-100} =$$

10.
$$\sqrt{-49} =$$

Operatoria de números imaginarios

Al igual que los números reales, los imaginarios dan cabida a la solución en la adición, sustracción, multiplicación y división.

2i + 8i = 10i	$2 \cdot 8i = 16i$
7i - 12i = -5i	$14i \div 2 = 7i$

Resuelve los siguientes ejercicios:

Sigue los ejemplos antes dados, utiliza los saberes aprendido en años anteriores y resuelve la operatoria de números imaginarios.

1.
$$5i + 2i =$$

2.
$$3i - 2i - 5i =$$

3.
$$-4i + 12i =$$

4.
$$12i - 3i + 4i =$$

5.
$$4i + 7i =$$

6.
$$6i + 8i - 2i =$$

7.
$$-2i - 8i + 12i =$$

8.
$$15i + 4i - 20i =$$

9.
$$153i + 209i - 18i =$$

10.
$$295i - 142i + 32i =$$

11.
$$4 \cdot 3i =$$

12.
$$12i \cdot 2 =$$

13.
$$4i \div 2 =$$

14.
$$-5i \cdot 3 \cdot 4 =$$

15.
$$4i \cdot 2i =$$

16.
$$\frac{10i}{2}$$
 =

Potencias de los números imaginarios

Si has desarrollado los ejercicios anteriores, notaste algo distinto en el ejercicio 15, pues como resultado obtendremos una potencia de numero imaginario. A continuación se presenta las potencias utilizadas de los números imaginarios.

i	$i = \sqrt{-1}$	$\sqrt{-1}$
i^2	$i \cdot i = \left(\sqrt{-1}\right)^2 = -1$	-1
i^3	$i^2 \cdot i = -1 \cdot i = -i$	-i
i^4	$i^2 \cdot i^2 = -1 \cdot -1 = 1$	1

Resuelve los siguientes ejercicios:

Identifica el resultado de las siguientes potencias:

1.
$$i^{123} =$$

2.
$$i^{67} =$$

3.
$$i^{7897} =$$

4.
$$i^{467} =$$

5.
$$i^{20947} =$$

6.
$$i^{1231343284} =$$